
7 June 2021 
Quantum Groups Online Seminar

Hopf algebras in   and set-theoretical YBE 
solutions

SupLat

By Aryan Ghobadi 
Queen Mary University of London 

Based on: arXiv:2001.08673 [G1],  arXiv:2005.07183 [G2]  

https://arxiv.org/abs/2001.08673
https://arxiv.org/abs/2005.07183


Hopf algebras in SupLat Aryan GhobadiCategories and Companions Symposium

 2
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• Set-theoretical YBE solutions, Skew braces 
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• Main Results  

• Application 1: Transmutation 

• Application 2: Categorical FRT 

• Application 3: Drinfeld Twists 

• Outlook
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(Co)-quasitriangular 
bialgebras

Set-theoretical 
YBE Solutions Skew Braces

Question: Can skew braces be viewed as Hopf algebras in a reasonable category?

Linear YBE Solutions
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Question: Can skew braces be viewed as Hopf algebras in a reasonable category?

a good categorical interpretation should: 

• Explain aspects of skew braces in terms of Hopf algebras 

• Categorical FRT should recover the universal skew brace 

• Allow us to apply Hopf algebra techniques to obtain new skew braces                                                
( Help Classification )
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• Solution is involutive if  r2 = idX×X

A set   + a map   satisfying                              

  

is called a set-theoretical YBE solution.

X r : X × X → X × X
r23r12r23 = r12r23r12

• Notation  , for  r(x, y) = (σx(y), γy(x)) σx, γy : X → X
• If   is bijective:  r r−1(x, y) = (τx(y), ρy(x))

• Graphical notation: 

• Solution is non-degenerate if   are bijections for all  . σx, γy x, y ∈ X
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r(e, g) = (g, e), r(g, e) = (e, g)

rm12 = m23r12r23

rm23 = m12r23r12

mr = m

  

[LYZ] A braiding operator on a group   is a map   satisfying  (G, m, e) r : G × G → G × G

It follows that   has to satisfy YBE, and is invertible and non-degenerate!r

G(X, r) = ⟨x ∈ X ∣ x . y = σx(y) . γy(x), ∀x, y ∈ X⟩Universal Group of solution  (X, r)
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 a . (b ⋆ c) = (a . b) ⋆ a⋆ ⋆ (a . c)

 [GV] A skew (left) brace consists of a set   + two group structures   and  B (B, . ) (B, ⋆ )

where   and   = multiplicative inverses of   with respect to   and  a−1 a⋆ a . ⋆

!Notation Warning! Authors (usually) use   and   instead of . and  ∘ . ⋆

•   called additive group of skew brace(B, ⋆ )

• If   is abelian then we have a brace(B, ⋆ )
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Skew braces 

 (B, . , ⋆ )

Groups with braiding operators 

  +   (G, m, e) r

 r(a, b) = (a⋆ ⋆ (a . b), (a⋆ ⋆ (a . b))−1 . a . b)
 (B, . , e)

 , where  

 

(G, m, ⋆ )

x ⋆ y := x . σ−1
x (y)
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From any Hopf algebra   in  , we can construct a group called its remnant    H SupLat 𝖱(H)

Main Theorems in [G1]

Any co-quasitriangular structure on   gives a braiding operator on  H 𝖱(H)

Any skew brace can be recovered in this way!
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• Objects: partially ordered sets  , where any subset  , has a least upper bound, 
 , called joins 

• Morphisms: join-preserving maps 

(ℒ, ≤ ) S ⊆ ℒ
⋁S

Notation:   for   ∨i∈I ai ∨ {ai ∣ i ∈ I}

• Free Lattices: For any set  , its power-set  , with  and?? is a complete lattice.X 𝒫(X) ∨ = ∪

• Fun Example: the set of positive integers,  , which divide a positive integer
 

div(z)
z ∈ N

Reference: Joyal-Tierney: An extension of the Galois theory of Grothendieck

• All objects in   have meets: (they're complete lattices!)  SupLat
∧ S = ∨ {a ∣ a ≤ s , ∀s ∈ S}
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•   is complete and co-completeSupLat

•   is symmetric monoidal closed:SupLat

• Notation: Top element of   =   , Bottom element of   =   ℒ ∨ ℒ ℒ ∅

  = Quotient of   by relations  

  

   

ℳ ⊗ 𝒩 𝒫(ℳ × 𝒩)

{(∨i∈Imi, n)} = ∪i∈I {(mi, n)}

{(m, ∨i∈I ni)} = ∪i∈I {(m, ni)}

• Monoidal unit:   {∅,1}

Reference: Joyal-Tierney: An extension of the Galois theory of Grothendieck
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Lemma. [G1] Dualisable objects in   are free lattices. SupLat

Fact. An invertible morphism   must be of the form   for a bijection 
 . 

r : 𝒫(X) → 𝒫(Y) 𝒫(b)
b : X → Y

We have a faithful monoidal functor 
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Any distributive complete lattice   

has a natural bialgebra structure with   acting as unit,  ,  , 
  and  . 

ℒ

∨ ℒ m(a, b) = a ∧ b ϵ(∨ℒ) = 1
ϵ(other elements) = ∅ Δ(a) = {(a,1)} ∨ {(1,a)}

  and  ∨i∈I (ai ∧ b) = (∨i∈Iai) ∧ b ∨i∈I (b ∧ ai) = b ∧ (∨i∈Iai)
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From any Hopf algebra   in  , We can construct a group called its remnant    H SupLat 𝖱(H)

Main Theorems in [G1]
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Any co-quasitriangular structure on   gives a braiding operator on  H 𝖱(H)
Main Theorems in [G1]

A co-quasitriangular structure consists of   ℛ : H ⊗ H → 𝒫(1)

 (a, b) ↦ ℛ(a(1), b(1)) . (b(2), a(2)) . ℛ−1(a(3), b(3))

ℛ−1(a(1), b(1)) . ℛ(a(2), b(2)) = ϵ(a) . ϵ(b) = ℛ(a(1), b(1)) . ℛ−1(a(2), b(2))

  

  

 

ℛ(a . b, c) = ℛ(b, c(1)) . ℛ(a, c(2))

ℛ(a, b . c) = ℛ(a(1), b) . ℛ(a(2), c)

ℛ(b(1), a(1))a(2) . b(2) = b(1) . a(1)ℛ(b(2), a(2))
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• Classify finite-dimensional Hopf algebras/  with positive basisC

Lu-Yan-Zhu Theory: [LYZ1], [LYZ2]  

• Any group with braiding operator give rise to such data trivially

(g−, h−) ⟼ (η(g−)h−, gξ(h−)
− )

• [LYZ2] A CQ structure on   corresponds to a pair of group morphisms   satisfying ....𝒫(G+ . G−) η, ξ : G− → G+

ϵ(g) = {1 iff g ∈ G−

∅ otherwise

• [LYZ1] Any such Hopf algebra is the bicrossproduct of a group algebra   and a function algebra  𝒫(G+) 𝒫(G−)
• Any Hopf algebra on a set   in   = Hopf algebra structure on a free lattice   in  G Rel 𝒫(G) SupLat

• Their proofs work for Hopf algebras in  Rel
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Question: Can skew braces be viewed as Hopf algebras in a reasonable category?

a good categorical interpretation should: 

• Explain aspects of skew braces in terms of Hopf algebras 

• Categorical FRT should recover the universal skew brace 

• Allow us to apply Hopf algebra techniques to obtain new skew braces                                                
( Help Classification )

Answer: Yes!
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If skew brace   arises as the remnant of  , then  (B, . , ⋆ ) (H, ℛ)
Theorem 4.3 of [G1]

Explain aspects of skew braces in terms of Hopf algebras 

  "transmuted product" ⋆ = π (ι ⊗ ι)

Transmutation Theory [Maj] 
Given any co-quasitriangular Hopf algebra  , we have a new product and antipode (H, ℛ)

  

 

a ⋆ b = ℛ (S(a(2)) ⊗ b(1)S(b(3))) a(1) . b(2)

S⋆(a) = ℛ (a(1) ⊗ S(a(4))S2(a(2))) S(a(3))

making H a braided Hopf algebra in the category of left  -comodules. H
  Transmutation in the category of right comodules would give skew right braces
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Categorical FRT should recover the universal skew brace

A. Braided object in arbitrary monoidal category:  

B. Functor interpretation  

C. Dualizable braided object 

D. Tannaka-Krein reconstruction 

 Hω := ∫
a∈ℬ

ω(a) ⊗ ω(a)∨



Hopf algebras in SupLat Aryan GhobadiCategories and Companions Symposium

 20

A. Braided object in arbitrary monoidal category:  

B. Functor interpretation  

C. Dualizable braided object 

D. Tannaka-Krein reconstruction 

  is the  -algebra generated by elements   and   corresponding to
  and imposing relations  
Hω SupLat (x, y)1 (x, y)2
x, y ∈ X

 = =  

  

 

∨a∈X {(x, a)1 . (x, a)2} {1} ∨a∈X {(a, x)2 . (a, x)1}

(x, a)1 . (y, a)2 = ∅ = (a, x)2 . (a, y)1

(x, y)1 . (a, b)1 = (σx(a), σy(b))1 . (γa(x), γb(y))1

 Hω := ∫
a∈ℬ

ω(a) ⊗ ω(a)∨

x ≠ y
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  is the  -algebra generated by elements   and   corresponding to
  and imposing relations 
Hω SupLat (x, y)1 (x, y)2
x, y ∈ X

 = =  

  

  

∨a∈X {(x, a)1 . (x, a)2} {1} ∨a∈X {(a, x)2 . (a, x)1}

(x, a)1 . (y, a)2 = ∅ = (a, x)2 . (a, y)1

(x, y)1 . (a, b)1 = (σx(a), σy(b))1 . (γa(x), γb(y))1

x ≠ y

  

 

ϵ((x, y)i) = 1 if and only if xij = yij for all 1 ≤ j ≤ n

Δ((x, y)i) = ∨ {((x, l)i, (l, y)i) ∣ ∀ l ∈ Xn}
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 Apply Hopf algebraic techniques to skew braces
Drinfeld co-twists
A co-twist on a CQ Hopf algebra   consists of   satisfying (H, ℛ) ℱ : H ⊗ H → 𝒫(1)

  

  

  

ℱ−1(a(1), b(1)) . ℱ(a(2), b(2)) = ϵ(a) . ϵ(b) = ℱ(a(1), b(1)) . ℱ−1(a(2), b(2))

ℱ (a(1) . b(1), c) . ℱ (a(2), b(2)) = ℱ (a, b(1) . c(1)) . ℱ (b(2), c(2))
ℱ(a,1) = ϵ(a) = F(1,a)

  

 

mℱ(a, b) = ℱ−1 (a(1), b(1)) . a(2) . b(2) . ℱ (a(1), b(1))
ℛℱ(a, b) = ℱ−1 (a(1), b(1)) ℛ(a(2), b(2)) . ℱ (b(3), a(3))

we obtain a new CQHA   (Hℱ, ℛℱ)



Hopf algebras in SupLat Aryan GhobadiCategories and Companions Symposium

 23

Drinfeld Twists on Skew Braces [G2] 

Consists of a triple of bijections   and   satisfyingF : G2 → G2 Φ, Ψ : G3 → G3

Any co-twist  on a co-quasitriangular Hopf algebra  induces a twist on its 
remnant skew brace  .

ℱ (H, ℛ)
𝖱(H)

Φr12 = r12ΦΨr23 = r23Ψ
F12Ψ = F23Φ

F(e, x) = (e, x), F(x, e) = (x, e)
Ψ(x, y, e) = (x, y, e), Φ(e, x, y) = (e, x, y)

m23Φ = Fm23 m12Ψ = Fm12

If   is a Drinfeld twist on a group   with a braiding operator  ,  

Then   defines a new group structure   with a braiding operator  .

(F, Φ, Ψ) (G, m, e) r

(G, mF−1, e) G FrF−1
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For any twist   there exists a family of group isomorphisms 
  satisfying   so that 

(F, Φ, Ψ) : (G, . , ⋆ ) → (G, ∘ , ⋆ )
{fx : (G, ⋆ ) → (G, ⋆′ � )}x∈G fx(x) = x

F(x, y) = (fx.y(x), σ−1
fx.y(x)(fx.y(σx(y)))) = (fx.y(x), fx.y(x)∘ ∘ (x . y))

The study of Drinfeld shows that consequences from SupLat go beyond LYZ theory
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1) Understand Bachiller's work in terms of comodules

2) Apply Co-double bosonisation to get new skew braces!

3) Combinatorial knot Invariants = Quantum invariants?

Co-quasitriangular 
Hopf algebras

Linear YBE 
Solutions

Skew bracesSet-theoretical 
YBE Solutions



Hopf algebras in SupLat Aryan GhobadiCategories and Companions Symposium

 26

 Slides/references available at my website:  
https://sites.google.com/view/aghobadimath 

https://sites.google.com/view/aghobadimath

